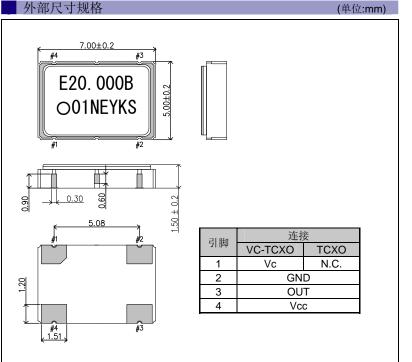
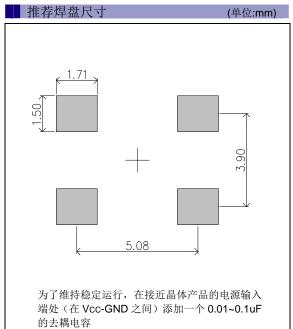


规格(特征)

项目	符号	VC-TCXO	TCXO	条件
		12.8 MHz ~	40.0 MHz	
输出频率范围	fo	12.8MHz, 16.368MHz, 19.	2MHz, 20MHz, 25.6MHz,	
		26MHz, 32.736	MHz, 40 MHz	标准频率
电源电压	Vcc	3.3 V ±0.165 V (电源电	压范围:2.7 V ~ 5.5 V)	
储存温度范围	T_stg	-40 °C ~	+90 °C	裸存
工作温度范围	T_use	-40 °C ~	+85 °C	
频率初期公差	f_tol	±1.0 × 10) ⁻⁶ Max.	在回流焊后, +25 ℃
频率温度特征	fo-Tc	±0.28 × 1	0 ⁻⁶ Max.	-40 °C ~ +85 °C
频率负载变动特征	fo-Load	±0.1 × 10) ⁻⁶ Max.	15 pF ±10 %
频率电源电压特征	fo-Vcc	±0.1 × 10) ⁻⁶ Max.	Vcc=3.3 V ±0.165 V
频率老化	fago	±0.5 × 10) ⁻⁶ Max.	+25 ℃, 第一年
<u> </u>	f_age	±3.0 × 10) ⁻⁶ Max.	+25 °C, 20 年
功耗	lcc	5.0 mA	Max.	12.8 MHz≦fo≦26 MHz
功和	ICC	6.0 mA	Max.	26 MHz <fo≦40 mhz<="" td=""></fo≦40>
输入电阻	Rin	100 kΩ Min.		Vc - GND (DC)
频率控制范围	f_cont	$\pm 5.0 \times 10^{-6} \sim \pm 12.0 \times 10^{-6}$	—	Vc=1.65 V ±1.65 V
频率变化极	_	正极		
占空比	SYM	45 % ~ 55 %		GND 极 (DC 切割)
输出电压	Vон	90 % Vo	c Min.	
制山电压	Vol	10 % Vc	c Max.	
输出负载条件 (CMOS)	L_CMOS	15 pF	Max.	

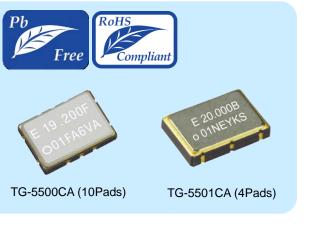

*说明:请联系我们以便获取上述内容未涉及的其它规格产品的相关信息


品名例 (标准显示) TG-5501 CA 20.00000MHz *** 1 2 3

①型号

②包装类型 ③频率 ④部分规格(请联系我们)

4



Ultra high stability temperature compensated crystal oscillator Product name : TG-5500CA / TG-5501CA

Features

- Ultra high stability
- Low phase noise
- Frequency range : 10 MHz to 50 MHz
- Output : CMOS, Clipped sine wave
- Supply voltage : 2.7 to 5.5 V
- External dimensions : 7.0 × 5.0 × 1.5 mm
- TG-5500CA(10pads), TG-5501CA(4pads)
- Pb free.
- Complies with EU RoHS directive.

Applications

- Stratum3
- Microwave BTS,
- Network synchronization etc.

Description

This product is ultra high stability temperature compensated crystal oscillator of CMOS and Clipped sine wave outputs using fundamental oscillation of Crystal unit. This has realized a low phase noise in frequency 10 to 50 MHz, and it is suitable for the reference clock include Stratum3.

Explanation of t	the mark that are using it for the documents
Pb Free	► Pb free.
	► Complies with EU RoHS directive.
RoHS	*About the products without the Pb-free mark.
Compliant	Contains Pb in products exempted by EU RoHS directive.
	(Contains Pb in sealing glass, high melting temperature type solder or other.)
For Automotive	► Designed for automotive applications such as Car Multimedia, Body Electronics, Remote Keyless Entry etc.
Automotive Safety	► Designed for automotive applications related to driving safety (Engine Control Unit, Air Bag, ESC etc).

[Notice]

This material is subject to change without notice.

Any part of this material may not be reproduced or duplicated in any form or any means without the written permission of Seiko Epson.

- The information about applied data, circuitry, software, usage, etc. written in this material is intended for reference only. Seiko Epson does not assume any liability for the occurrence of customer damage or infringing on any patent or copyright of a third party. This material does not authorize the licensing for any patent or intellectual copyrights.
- When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- You are requested not to use the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes. You are also requested that you would not make the products available to any third party who may use the products for such prohibited purposes.

These products are intended for general use in electronic equipment. When using them in specific applications that require extremely high reliability, such as the applications stated below, you must obtain permission from Seiko Epson in advance.

/ Space equipment (artificial satellites, rockets, etc.) / Transportation vehicles and related (automobiles, aircraft, trains, vessels, etc.) / Medical instruments to sustain life / Submarine transmitters / Power stations and related / Fire work equipment and security equipment / traffic control equipment / and others requiring equivalent reliability.

1. Electrical characteristics

1) Absolute maximum ratings

Parameter	Symbol	Unit	Min.	Тур.	Max	Notes
Supply voltage	V _{CC} -GND	V	-0.6	-	+6.0	
Storage temperature	T_stg	°C	-40	-	+90	Store as bare product after packing
Frequency control voltage	V _C -GND	V	-0.6	-	V _{CC} +0.6	V _C Terminal

2) Operating conditions

Parameter	Symbol	Unit	Min.	Тур.	Max	Notes
			2.7	2.85	3.0	V _{CC} =2.85 V Type
	Maa		2.85	3.0	3.15	V _{CC} =3.0 V Type
Supply voltage	Vcc	V	3.135	3.3	3.465	V _{CC} =3.3 V Type
			4.75	5.0	5.25	V _{CC} =5.0 V Type
	GND		0.0	-	0.0	
Operating temperature range	T_use	°C	-40	+25	+85	
	Vc	V	GND	N.C.	-	V _C Terminal / TCXO
			0.0	1.65	3.3	V _C Terminal / VC-TCXO
Frequency control voltage						(V _{CC} =2.85, 3.0, 3.3 V Type)
			0.5	2.5	4.5	V _C Terminal / VC-TCXO
			0.5		4.5	(V _{CC} =5.0 V Type)
	Load_C	pF	13.5	15	16.5	CMOS output
	Load_C	pF	9	10	11	Clipped sine wave
Output load condition	Load_R	kΩ	9	10	11	
	Ca	μF	0.01			DC-cut capacitor *1
	Cc		0.01	-	-	Clipped sine wave

*1 DC-cut capacitor is not included in this TCXO. Please attach an external DC-cut capacitor (0.01 µF Min.) to the out pin.

3-1) Frequency characteristics (Vo

(Vcc=Typ., GND=0.0 V, Vc=Typ. V, Load=Typ., T_use=+25°C)

Symbol	Unit	Min.	Тур.	Max	Notes		
fo	MHz	10	-	50			
f_tol	× 10 ⁻⁶	-1.0	-	+1.0	T_use=+25°C +/-2°C Reflow cycles : 2 times *2		
		-0.28	-	+0.28	T_use=-40°C to +85°C, (12.8 MHz ≤ fo)		
fo-Tc	× 10 ⁻⁶	-0.25	-	+0.25	T_use=-40°C to +85°C (12.8 MHz ≤ fo, Option Spec.)		
		-1.0	-	+1.0	T_use=-40°C to +85°C (10 MHz ≤ fo < 12.8 MHz)		
folload	× 10 ⁻⁶	-0.1	-	+0.1	Load+/-10%		
10-L0a0	× 10	-0.05	-	+0.05	Load +/-2%		
fo V/ss	·· 10 ⁻⁶	-0.1	-	+0.1	V _{CC} +/-5%		
IO- V CC		-0.05	-	+0.05	V _{CC} +/-2%		
-	× 10⁻ ⁶ /°C	-0.4	-	+0.4	1 °C/minute max.		
fore	·· 10 ⁻⁶	-0.5	-	+0.5	T_use=+25°C, First year		
I_age	× 10	-3.0	-	+3.0	T_use=+25°C, 20 years		
	·· 10 ⁻⁶	-0.01	-	+0.01	T_use=+25°C, 1 day *3		
-	× 10	-0.04	-	+0.04	T_use=+25°C, 1 day *4		
-	× 10 ⁻⁶	-4.6	-	+4.6	*5		
-	× 10 ⁻⁹ /G	-	2.0	-	3 axes, 30-1500 Hz		
	fo f_tol fo-Tc fo-Load fo- V _{cc} - f_age -	fo MHz f_tol $\times 10^{-6}$ fo-Tc $\times 10^{-6}$ fo-Load $\times 10^{-6}$ fo-Vcc $\times 10^{-6}$ - $\times 10^{-6}$ f_age $\times 10^{-6}$ - $\times 10^{-6}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

*2 Measured in the elapse of 24 hours after reflow soldering.

*3 After 10 days of continuous operation.

*4 After 48 hours of continuous operation.

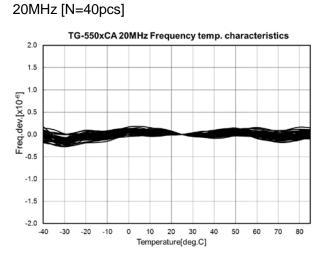
*5 This includes initial frequency tolerance, frequency / temperature characteristics, frequency / load coefficient, frequency/voltage coefficient and frequency aging (+25°C, 20 years)

3-2) Frequency control characteristics

Stics (Vcc=Typ., GND=0.0 V, Vc=Typ. V, Load=Typ., T_use=+25°C)

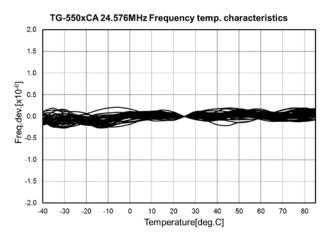
Parameter	Symbol	Unit	Min.	Тур.	Max	Notes
Frequency control range	f_cont	× 10 ⁻⁶	-12.0	-	-5.0	Vc=1.65V+/-1.65V, at Vcc=2.85V, 3.0V, 3.3V
	—		+5.0	-	+12.0	Vc=2.5V+/-2.0V, at Vcc=5.0V
Linearity	-	%	-10	-	+10	
Input impedance	Z _{IN}	kΩ	100	-	-	V_{C} -GND(DC), V_{C} =Typ.
Frequency change polarity	-	-	Р	ositive polari [.]	ty	

4) Electrical Characteristics

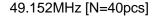

4) Electrical Chara			(V	cc=Typ., GN	ND=0.0 V, Vo	<u>c=Typ. V, Load=Typ., T_use=+25°C</u>
Parameter	Symbol	Unit	Min.	Тур.	Max	Notes
			-	-	5.0	V _{CC} =2.85, 3.0, 3.3V (~26MHz)
			-	-	6.0	V _{CC} =2.85, 3.0, 3.3V (~40MHz)
					8.0	V _{CC} =2.85, 3.0, 3.3V (~50MHz)
Current consumption	Icc	mA	-	-	6.0	V _{CC} =5.0V (~26MHz)
			-	-	8.0	V _{CC} =5.0V (~40MHz)
			-	-	10.0	V _{CC} =5.0V (~50MHz)
			-	-	5.0	Clipped sine wave Filter ON (Standard)
Start up time	t_str	s	-	0.4	2.0 0.005	Filter OFF (Option)
			-	0.001	8.0	10%Vcc to 90%Vcc level
Rise time	tr	ns	-	-	5.0	CMOS output
			-	-	8.0	90%Vcc to 10%Vcc level
Fall time	tf	ns	-	-	5.0	CMOS output
			45	50		50% Vcc level
	0)///	0/	45	50	55	CMOS output
Symmetry	SYM	%	40	50	60	GND level(DC-cut)
			-	50	00	Clipped sine wave (Option)
High output voltage	V _{OH}	V	90% V _{CC}	-	-	CMOS output
Low output voltage	V _{OL}	V	-	-	10% Vcc	CMOS output
Output level	Vp-p	Vp-p	0.8	-	-	Clipped sine wave
			-	-67	-52	1 Hz offset
			-	-96	-84	10 Hz offset
Dhaaa aaira			-	-123	-113	100 Hz offset
Phase noise (20MHz)	L(f)	dBc/ Hz	-	-145	-137	1 kHz offset
			-	-153	-147	10 kHz offset
			-	-155	-149	100 kHz offset
			-	-156	-151	1 MHz offset
			-	-65	-51	1 Hz offset
			-	-96	-84	10 Hz offset
		15 (-	-123	-113	100 Hz offset
Phase noise (26MHz)	L(f)	dBc/ Hz	-	-145	-137	1 kHz offset
()			-	-153	-147	10 kHz offset
			-	-155	-149	100 kHz offset
			-	-156	-151	1 MHz offset
			-	-51	-37	1 Hz offset
			-	-79	-67	10 Hz offset
Phase noise		dBc/	-	-107	-97	100 Hz offset
(50MHz)	L(f)	Hz	-	-131	-123	1 kHz offset
. ,			-	-148	-142	10 kHz offset
			-	-154	-148	100 kHz offset
			-	-156	-151	1 MHz offset

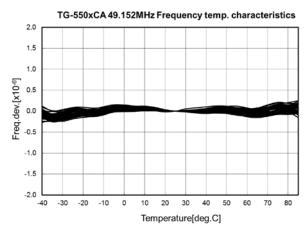
5) Enable/disable input

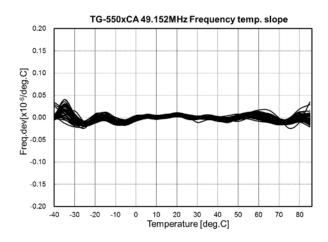
Parameter	Symbol	Unit	Min.	Тур.	Max	Notes
Enable voltage	VIH	V	70% Vcc	-	Vcc	OE terminal (Enable voltage)
Disable voltage	VIL	V	-	-	30% Vcc	OE terminal (Disable voltage)
Input impedance	-	kΩ	50	-	-	Vcc=typ.

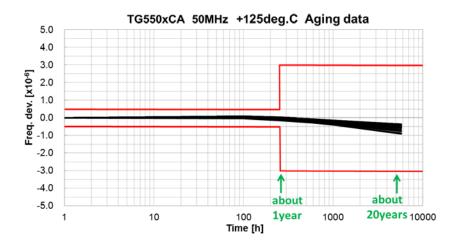

2. Characteristics

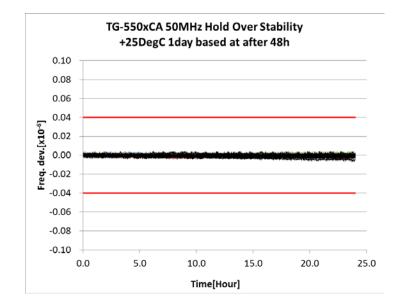
2-1) "Frequency / temperature characteristics" and "Frequency / temperature slope"

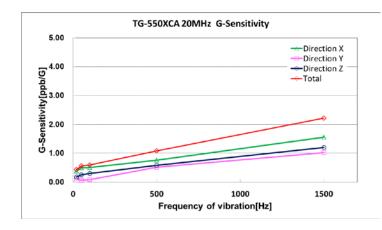



TG-550xCA 20MHz Frequency temp. slope 0.20 0.15 0.10 Freq.dev[x10-6/deg.C] 0.05 0.00 -0.05 -0.10 -0.15 -0.20 -40 20 70 -30 -20 -10 0 10 30 40 50 60 80 Temperature [deg.C]


24.576MHz [N=40pcs]

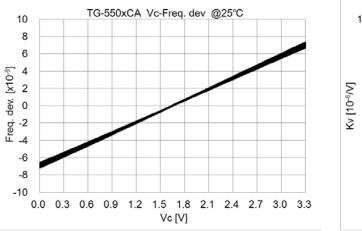

TG-550xCA 24.576MHz Frequency temp. slope 0.20 0.15 Ereq.dev[x10.6/deg.C] 0.00 0.02 0.00 -0.02 -0.10 -0.15 -0.20 -30 -20 10 20 30 40 50 60 70 80 -40 -10 0 Temperature [deg.C]

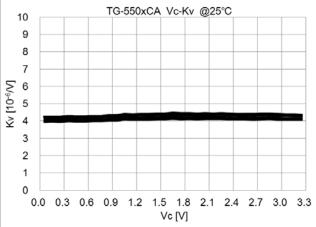

2-2) Frequency aging (50MHz) [N=20pcs]


about 1year Ave. : -0.05 x 10⁻⁶ Max. : +0.04 x 10⁻⁶ Min. : -0.16 x 10⁻⁶

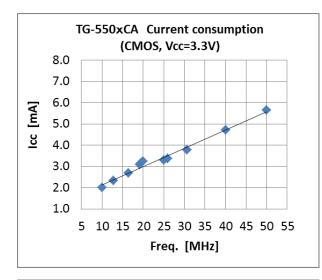
about 20years Ave. : -0.53 x 10⁻⁶ Max. : -0.35 x 10⁻⁶ Min. : -0.94 x 10⁻⁶

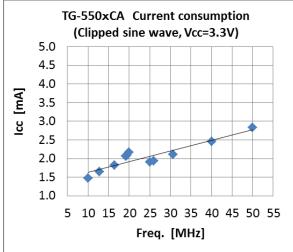
2-3) Holdover stability (50MHz) [N=40pcs]

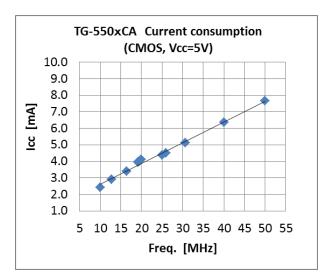

2-4) G-sensitivity (20MHz)

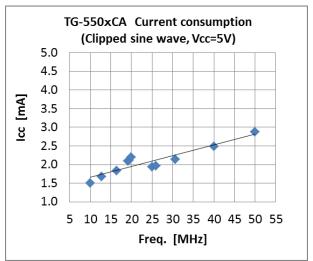


0.6 ppb/G Typ.@ 100Hz, 1.1 ppb/G Typ.@ 500Hz, 2.2 ppb/G Typ.@ 1500Hz.

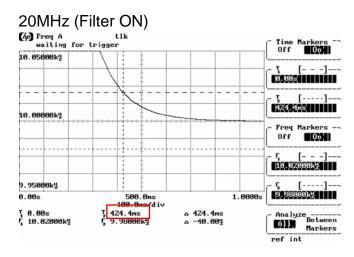


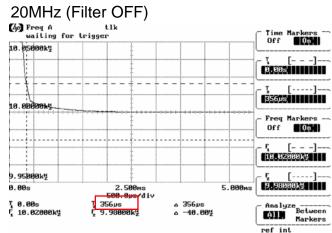

2-5) Frequency control characteristics [N=40pcs]

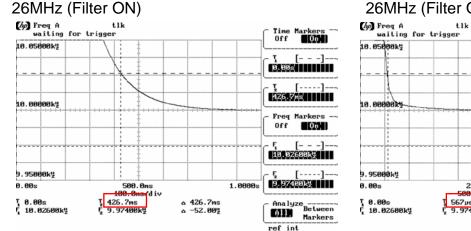


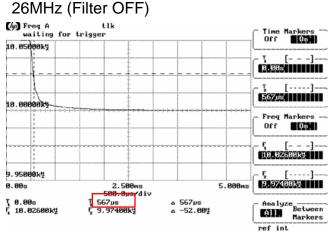


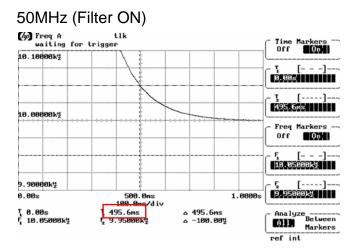
2-6) current consumption

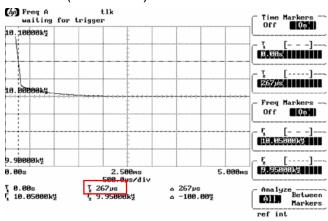


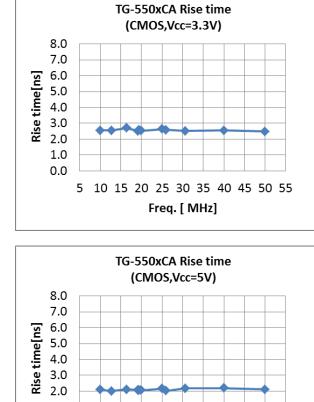


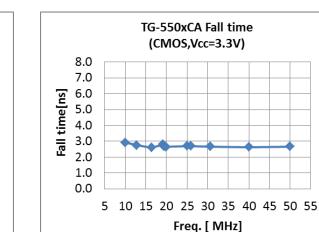


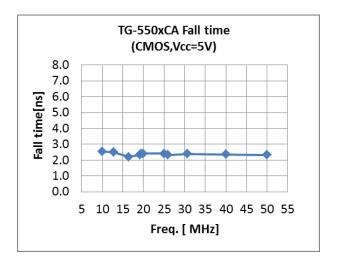



2-7) start up time(20MHz, 26MHz, 50MHz, Type: Filter ON or Filter OFF)

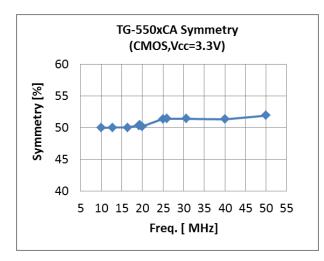




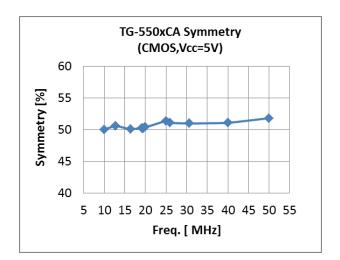

Seiko Epson Corporation Document No.: TG-550xCA_AE_Ver. 1.04


Date: Mar. 1st 2017

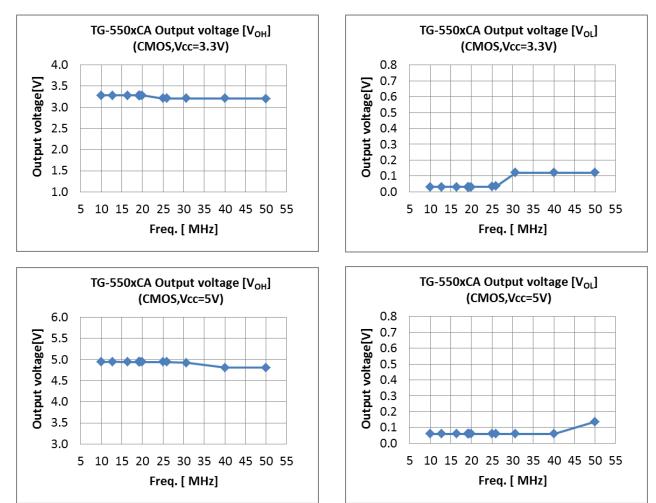
2-8) Rise time / Fall time (at CMOS output)



2-9) Symmetry (at CMOS output)

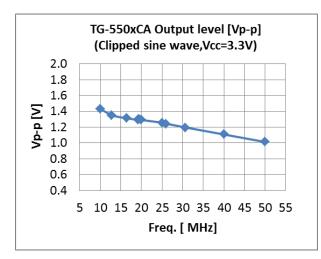

1.0

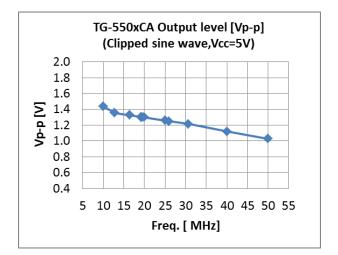
0.0



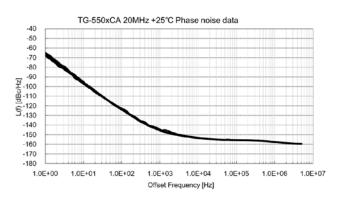
5 10 15 20 25 30 35 40 45 50 55

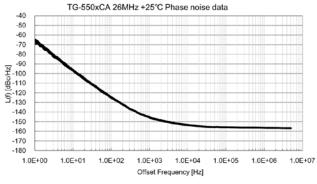
Freq. [MHz]

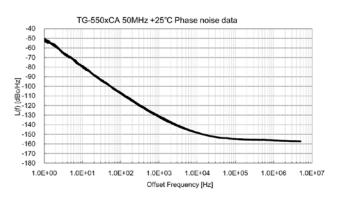


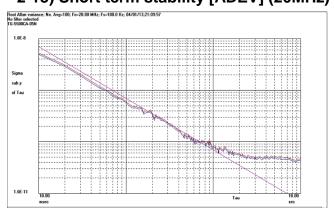


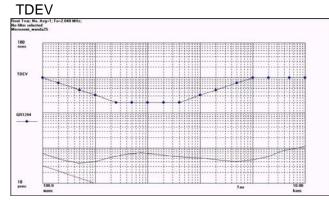
2-10) Output voltage [V_{OH}, V_{OL}] (at CMOS output)

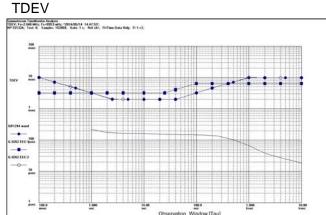

2-11) Output level [V_{P-P}] (at Clipped sine wave)

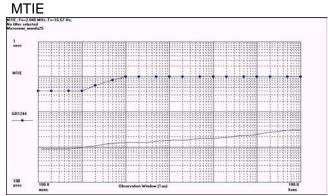




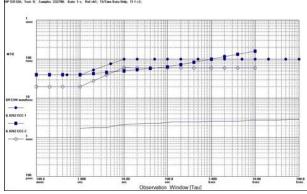

2-12) Phase noise (20MHz, 26MHz, 50MHz, refer to data of Page3.) [N=10pcs]



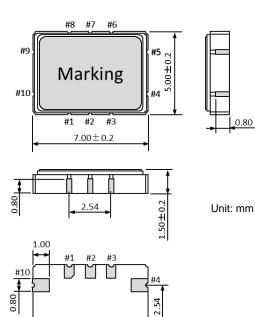

2-13) Short term stability [ADEV] (20MHz)



2-14) TDEV and MTIE (24.576MHz , 49.152MHz) 24.576MHz



49.152MHz


MTTLE mentions Tuesdenik Andres Til: (no.2014/05/16 15:45:30") Til: 20120, Tues 7: Samie 20200, Gale 11; Hof Ahi, Til/Tae Deta Dej, 113-2

3. Outline

3-1) Outline dimensions and Pin information 3-1-1) TG-5500CA

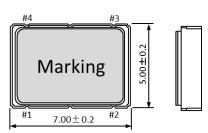
TG-5500CA Pin VC-TCXO тсхо 1 N.C. 2 N.C. N.C. 3 4 GND 5 OUT N.C. 6 7 N.C. 8 OE 9 Vcc 10 N.C. V_{C}

OE pin = "H" or "open": Specified frequency output. OE pin = "L" : Output is high impedance.

Do not connect "N.C." pin with any other pins (also mutually)

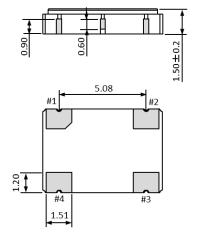
If OE Function does not use ,

We recommended connecting OE(#8pin) to Vcc (#9pin)


Pin	TG-5501CA					
FIII	VC-TCXO	тсхо				
1	Vc	N.C.				
2	GN	D				
3	OU	Т				
4	V _{cc}					

Do not connect "N.C." pin with any other pins (also mutually)

3-1-2) TG-5501CA


.80

#8 #7

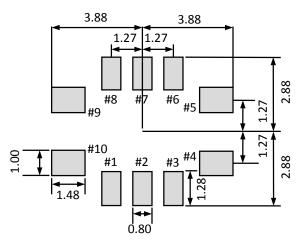
#6

0.60

Unit: mm

0.80

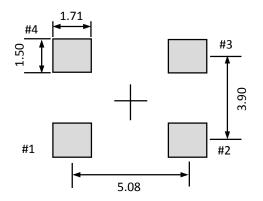
Seiko Epson Corporation Document No.: TG-550xCA_AE_Ver. 1.04 Date: Mar. 1st 2017



3-2) Soldering pattern

Example of patterning design indicated as follows. In an actual design, please consider mounting density, the reliability of soldering, etc. and check whether performance is optimal.

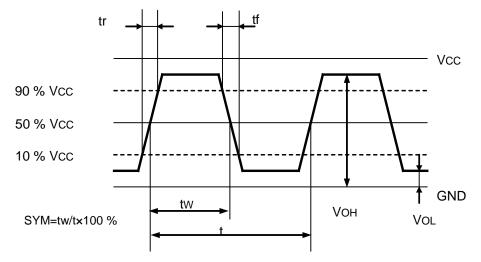
3-2-1) Soldering pattern of TG-5500CA


unit : mm

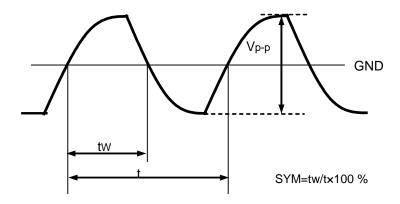
To maintain stable operation, provide a 0.01uF to 0.1uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc - GND).

3-2-2) Soldering pattern of TG-5501CA

unit : mm

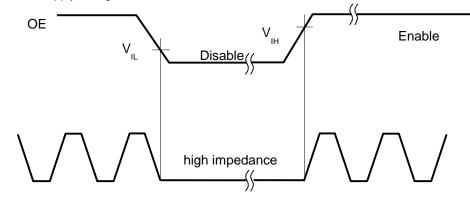


To maintain stable operation, provide a 0.01uF to 0.1uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc - GND).



4. Timing chart

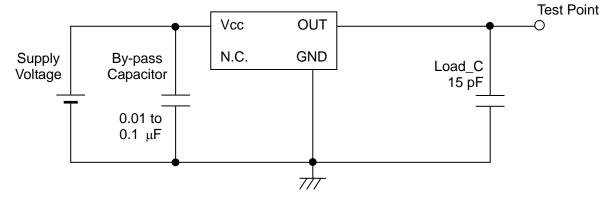
4-1-1) Output waveform (CMOS output)

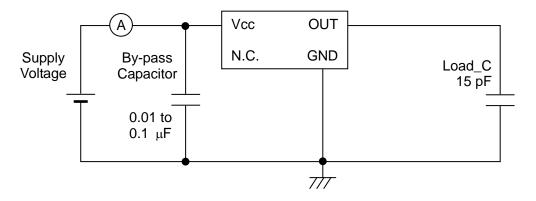

4-1-2) Output waveform (Clipped sine wave output)

4-2) OE function and timing

OE input level	Oscillation	Outputs
"H" or "Open"	Enable	Enable : specified frequency
"L"	Enable	Disable : high impedance

* OE input voltage must be lower than Vcc. Note that rise-up time of OE input voltage must not be shorter than the rise-up time of supply voltage.




5. Test circuit

5-1) CMOS output for TCXO

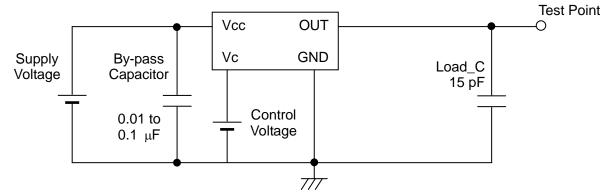
1) Output Load : 15 pF

2) Current consumption

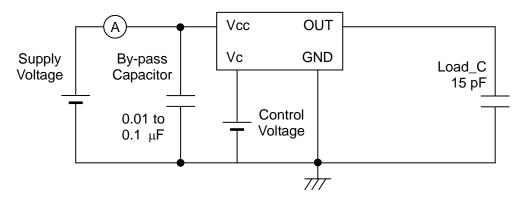
3) Conditions

1. Oscilloscope:	Impedance	Min. 1 MΩ
	Input capacitance	Max. 10 pF
	Band width	Min. 300 MHz

Impossible to measure both frequency and wave form at the same time.(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)


- 2. Load_C includes probe capacitance.
- 3. A capacitor (By-pass:0.01 to 0.1 $\,\mu\text{F})$ is placed between V $_{\text{CC}}$ and GND,and closely to TCXO.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply

Impedance of power supply should be as low as possible.



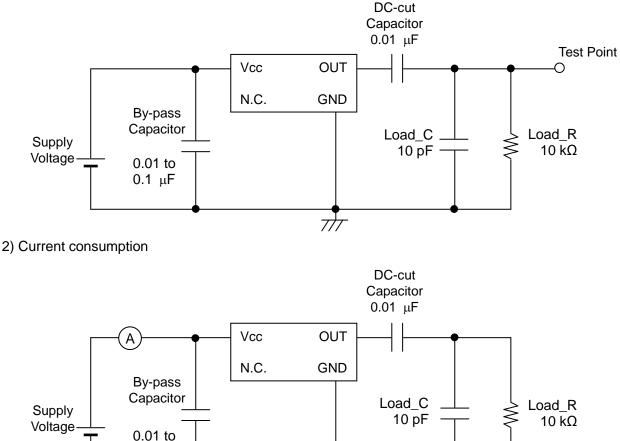
5-2) CMOS output for VC-TCXO

1) Output Load : 15 pF

2) Current consumption

3) Conditions

1. Oscilloscope:	Impedance	Min. 1 MΩ
	Input capacitance	Max. 10 pF
	Band width	Min. 300 MHz


Impossible to measure both frequency and wave form at the same time.(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)

- 2. Load_C includes probe capacitance.
- 3. A capacitor (By-pass:0.01 to 0.1 μ F) is placed between V_{CC} and GND,and closely to TCXO.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply

Impedance of power supply should be as low as possible.

5-3) Clipped sine wave output for TCXO

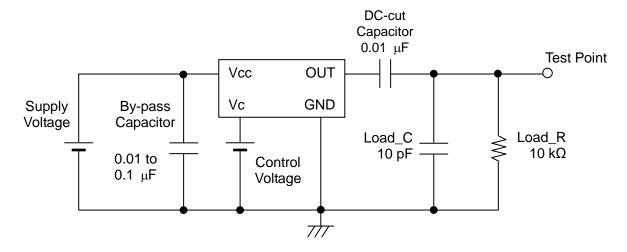
1) Output Load : 10 kΩ // 10 pF

0.01 to 0.1 μF T

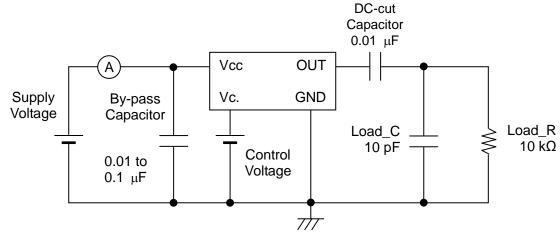
3) Conditions

1. Oscilloscope:	Impedance	Min. 1 MΩ
	Input capacitance	Max. 10 pF
	Band width	Min. 300 MHz

Impossible to measure both frequency and wave form at the same time.(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)


- 2. Load_C includes probe capacitance.
- 3. A capacitor (By-pass:0.01 to 0.1 μ F) is placed between V_{CC} and GND,and closely to TCXO.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply

Impedance of power supply should be as low as possible.



5-4) Clipped sine wave output for VC-TCXO

1) Output Load : 10 k Ω // 10 pF

2) Current consumption

3) Conditions

1. Oscilloscope:	Impedance	Min. 1 MΩ
	Input capacitance	Max. 10 pF
	Band width	Min. 300 MHz

Impossible to measure both frequency and wave form at the same time.(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)

- 2. Load_C includes probe capacitance.
- 3. A capacitor (By-pass:0.01 to 0.1 $\,\mu\text{F})$ is placed between V $_{\text{CC}}$ and GND,and closely to TCXO.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply

Impedance of power supply should be as low as possible.

6. Handling precautions

Prior to using this product, please carefully read the section entitled "Precautions" on our Web site

(<u>http://www5.epsondevice.com/en/quartz/tech/precaution/</u>) for instructions on how to handle and use the product properly to ensure optimal performance of the product in your equipment. Before using the product under any conditions other than those specified therein, please consult with us to verify and confirm that the performance of the product will not be negatively affected by use under such conditions.

In addition to the foregoing precautions, in order to avoid the deteriorating performance of the product, we strongly recommend that you <u>DO NOT</u> use the product under <u>ANY</u> of the following conditions:

- (1) Mounting the product on a board using water-soluble solder flux and using the product without removing the residue of the flux completely from the board. The residue of such flux that is soluble in water or water-soluble cleaning agent, especially the residues which contains active halogens, will negatively affect the performance and reliability of the product.
- (2) Using the product in any manner that will result in any shock or impact to the product.
- (3) Using the product in places where the product is exposed to water, chemicals, organic solvent, sunlight, dust, corrosive gasses, or other materials.
- (4) Using the product in places where the product is exposed to static electricity or electromagnetic waves.
- (5) Applying ultrasonic cleaning without advance verification and confirmation that the product will not be affected by such a cleaning process, because it may damage the crystal, IC and/or metal line of the product.
- (6) Touching the IC surface with tweezers or other hard materials directly.
- (7) Using the product under any other conditions that may negatively affect the performance and/or reliability of the product.
- (8) Power supply with ripple may cause of incorrect operation or degradation of phase noise characteristics, so please evaluate before use.
- (9) Frequency aging is from environmental tests results to the expectation of the amount of the frequency variation. This doesn't guarantee the product-life cycle.

Should any customer use the product in any manner contrary to the precautions and/or advice herein, such use shall be done at the customer's own risk.

7. Contact

<u>America</u>

Epson Electronics America, Inc. 214 Devcon Drive, San Jose, CA 95112, U.S.A. Phone: +1-800-228-3964 FAX: +1-408-922-0238

<u>Europe</u>

Epson Europe Electronics GmbH Riesstrasse 15, 80992 Munich, Germany Phone: +49-89-14005-0 FAX: +49-89-14005-110

<u>Asia</u>

Epson (China) Co., Ltd. 7F, Jinbao Bldg., No.89 Jinbao Street Dongcheng District, Beijing, China, 100005 Phone: +86-10-8522-1199 FAX: +86-10-8522-1120

Shanghai Branch

High-Tech Building, 900 Yishan Road, Shanghai 200233, China Phone: +86-21-5423-5577 FAX: +86-21-5423-4677

Shenzhen Branch

12/F, Dawning Mansion, #12 Keji South Road, Hi-Tech Park, Shenzhen, China Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

Epson Hong Kong Ltd.

Unit 715-723 7/F, Trade Square, 681 Cheung Sha Wan Road, Kowloon, Hong Kong Phone: (86) 755-26993828 (Shenzhen Branch) FAX: (86) 755-26993838 (Shenzhen Branch)

Epson Taiwan Technology & Trading Ltd.

14F, No. 7, Song Ren Road, Taipei 110, Taiwan Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

Epson Singapore Pte., Ltd.

No 1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

Seiko Epson Corp. Korea Office

19F, (63 Bldg., Yoido-dong) 50, 63-ro, Yeongdeungpo-gu, Seoul 150-763, Korea Phone: +82-2-784-6027 FAX: +82-2-767-3677